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Abstract 

Many transportation agencies, planning organizations, and local governments are interested in 

predicting travel outcomes like vehicle miles traveled (VMT) and transit ridership, yet most lack 

formal tools for evaluating the effects of individual decisions on travel behavior. However, 

improved access to data and computing capabilities are enabling more agencies to develop 

accessibility metrics—describing access to destinations by various modes—which are useful for 

characterizing the built environment and its potential impacts on travel behavior. This study 

presents numerous models in different geographic areas that provide strong evidence for the use 

of accessibility metrics in predicting VMT and transit ridership. A general trend among those 

models is that accessibility by walking and transit, relative to driving, corresponds with lower 

vehicle use and higher transit use. Vehicle ownership also plays a critical role. These methods 

could be applied by practitioners to gauge the potential impacts of transportation investments, 

parking policies, and other built environment changes on travel outcomes. 
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Background 

Many transportation agencies, planning organizations, and local governments are interested in 

predicting travel outcomes like vehicle miles traveled (VMT) and transit ridership, often as part 

of transportation demand management (TDM) efforts, yet most lack formal tools for evaluating 

the effects of individual decisions on travel behavior. Many existing tools are either too resource 

intensive for agencies to manage or cannot properly capture the effects of smaller transportation 

projects and land use changes on travel behavior (e.g., four-step travel demand models). 

Improved access to data and computing capabilities, however, are enabling more agencies to 

conduct accessibility analysis—measuring access to destinations by various modes—using 

sketch-planning tools, standalone platforms, or open-source applications. Accessibility metrics 

are useful simply for describing how well transportation systems serve different populations in 

different locations, but they also have great potential in capturing key built environment 

characteristics at all scales and translating those characteristics into travel behavior outcomes like 

vehicle and transit use.  

Measuring and managing VMT has been of growing interest among transportation agencies. 

Historically, VMT has been viewed generally as a positive outcome, often linked to economic 

growth in the U.S., although recent research refutes the direct causal nature of that relationship, 

particularly in the last decade (1–3). More recently, VMT has been associated with negative 

outcomes such as traffic congestion, emissions (4, 5), and traffic deaths (6–9). For these reasons, 

many local governments and transportation agencies now view transportation demand 

management (TDM) as an effective strategy for maintaining efficient transportation systems and 

mitigating the negative consequences of excess vehicle travel. Perhaps most notably, California 

recently mandated that VMT replace highway level of service (LOS) in quantifying the negative 

environmental impacts from transportation projects and new developments (10). Other 

municipalities outside of California, such as Cambridge, Massachusetts, and Arlington County, 

Virginia, have explicit goals to reduce vehicle travel through TDM programs (11). 

This means, of course, that local governments and transportation agencies also need tools and 

methods for estimating how individual decisions and projects are likely to affect VMT. While 

transportation and land use policies are known to influence VMT, quantifying the impacts has 

proven challenging (12–14). Travel demand models are a common tool for states and 

metropolitan regions, but they require significant resources to run and their ability to model 

project level changes, particularly for non-auto modes, is limited (15–17). More advanced 

approaches like activity-based models, dynamic traffic assignment, and integrated transportation 

and land use models are considerably less common and require substantial additional resources 

(15, 18, 19).  

Similarly, agencies are often interested in estimating transit ridership, partly to justify service 

changes and meet customer needs, but also as a way of lowering vehicle travel demand. Transit 

improvements and incentives are often included in TDM programs like those described above. 

However, estimating ridership—especially those associated with service changes—can also be a 

challenging task involving complex travel demand models.  
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Given the need for simpler tools that are sensitive to smaller projects and changes to the built 

environment, a range of sketch-level scenario planning tools exist. These tools often incorporate 

some information about transportation provision, but are typically more useful for evaluating 

different land use scenarios (20, 21). A common approach employed for many of these tools is 

using what are often characterized as the “D variables,” e.g., density, diversity of land uses, 

design of street networks, destination accessibility, and distance to transit (22, 23). A recent 

meta-analysis validates factors like density, street connectivity, destination accessibility, and 

access to transit are all associated with lower VMT (23). In the same special issue of the Journal 

of the American Planning Association, researchers point to the importance of these findings for 

planning practice (24–26).  

While easy to implement with readily available data, however, this approach has important 

practical limitations, including those outlined by Handy (25) and Næss (27). As an example, we 

consider estimating the impacts of a new, high frequency transit line on household VMT. Based 

on a conventional metric like distance to the nearest transit stop, this project is likely to have a 

relatively small effect on some households in its vicinity. Distance from the city center, 

meanwhile, is much more influential (23). In combination, these two metrics provide some idea 

about how well the project might connect people to jobs, yet that specific measure—access to 

jobs via transit—appears to be a relatively weak predictor (22, 23). Moreover, neither metric 

accounts for the frequency of transit service, which has significant impact on transit usage (28). 

Similar issues arise when trying to predict the impacts of street design on travel behavior. The 

most common design metric, intersection density, does not properly reflect the potential impacts 

of specific transportation projects such as a critical street connection or new bicycle and 

pedestrian facilities. 

This study, therefore, aims to position accessibility metrics that account for multimodal access to 

work and non-work destinations as valuable performance measures for evaluating project 

impacts on VMT—particularly household VMT, which accounts for 75 to 80 percent of the U.S. 

total (29, 30)—and other travel outcomes. The motivation and need for this work are twofold: 1) 

accessibility metrics have a clear potential to capture important built environment characteristics 

and project impacts holistically, and 2) recent advancements in data availability and computing 

capability enable relatively straightforward computation of advanced accessibility metrics by 

transportation agencies and other decision-makers. The basic concept of accessibility dates back 

decades (31, 32) and many analytical tools exist across the globe (33, 34), yet despite being 

widely recognized among practitioners, quantitative metrics are rarely employed (35–37). A 

recent study of U.S. regional transportation plans found that about half establish accessibility-

related goals, but only 20 percent propose explicit accessibility metrics (38). Among studies 

linking accessibility metrics to VMT, most only consider accessibility by driving (22). Those 

that include transit accessibility measures typically derive travel times from travel demand 

models (39–42), while others simply measure accessibility in terms of straight-line or network 

distance (43–47). There are also several isolated studies indicating a relationship between 

accessibility metrics and transit use, typically in terms of mode share (48–54). 

This study builds on those past efforts by incorporating robust travel behavior data spanning a 

considerable geographic scope, to test the universal application of accessibility metrics for 
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estimating travel outcomes across the U.S. The goal is offer simple, reliable methods for linking 

multimodal transportation investments to outcomes like VMT and transit use. 
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Data and methods 

Overview 

This study incorporates a wide range of data sources—national and local—to explore and 

quantify the relationships between multimodal accessibility metrics and household travel 

behavior, including household VMT and transit ridership. It is divided in three parts, each 

different in scope and focused on different travel behavior outcomes:  

1. Average household VMT in the greater Boston region (proof-of-concept), 

2. Individual household VMT across the U.S. (exploratory), and 

3. Transit ridership in selected regions (exploratory). 

General modeling approach 

In developing models to understand the relationships between accessibility metrics and travel 

outcomes, there are two possible approaches, each serving a different purpose. The first is to 

include many explanatory variables—accessibility metrics, additional built environment and 

transportation service metrics, and detailed demographic characters—with the goal of achieving 

highly accurate models with small margins of error. This approach is common in travel demand 

modeling and sketch planning applications. The second approach is to focus specifically on 

accessibility metrics and several other key control measures, with the goal of understanding 

potential explanatory power of different accessibility metrics and their potential use in practical 

decision-making applications. This study is interested in the second approach. 

This approach admittedly has shortcomings. For instance, an individual’s economic status, line 

of work, stage of life, physical ability, and political views influence their travel habits in ways 

that our models do not capture directly. However, those individual traits are highly dynamic 

compared to transportation infrastructure and other built environment provisions, which often 

last for decades or generations, even as populations change and relocate. In other words, 

transportation agencies interested in lowering vehicle use or increasing transit use may be 

interested in the cumulative impacts of transportation investments and built environment changes 

over many years, with less regard for the underlying demographic characteristics of those places. 

Many studies focused on the influence of the built environment on travel behavior also take 

interest in the potential influence of residential self-selection. That is: can changes to the built 

environment cause individuals to behave differently, or do built environments attract certain 

populations that are predisposed to behaving a certain way? This is an important line of research, 

especially for understanding the potential limits of built environment changes to influence travel 

behavior. For transportation agencies interested in facilitating certain travel habits, however, the 

underlying mechanisms are less important. 

Due to the nature of the available data, this study relies on several modeling approaches, 

including nonlinear models and simple linear regression. These models are described in the 

following subsections of this report, under Methods. 
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Data sources 

State Smart Transportation Initiative (SSTI) 

This study relies on a set of optimized multimodal accessibility metrics developed by our 

research team at the State Smart Transportation Initiative (SSTI) through past work in eight 

states between 2015 and 2021. The methods and data used are outlined by McCahill (55) and 

McCahill et al. (56). They include three metrics: the number of jobs accessible by driving during 

the morning period, the number of jobs accessible by transit during the morning period, and the 

number and diversity of non-work points of interest (POIs) accessible by walking.  

Each of the metrics uses gravity-based destination weighting, which has long been regarded as 

more theoretically sound than cumulative opportunity metrics that use a single travel time cutoff 

(57, 58), and is common in studies relating accessibility to travel outcomes (39, 49, 53). 

Destination weighting is based on mode-specific travel time decay functions derived from the 

2017 National Household Travel Survey (NHTS). For instance, a job that takes 25 minutes to 

reach by driving counts as 0.40 jobs, because 40 percent of home-based work trips take 25 

minutes or longer. Walking accessibility is measured using a pedestrian impedance concept, 

whereby wider roads with fast traffic and poor pedestrian facilities receive a travel time penalty 

(59).  

Road and pedestrian networks are based on data from HERE Technologies, which includes 

average observed vehicle speeds during the morning period. Transit networks are based on 

publicly available data in General Transit Feed Specification (GTFS) format. Jobs data are from 

LEHD Origin-Destination Employment Statistics (LODES) Data, produced by the U.S. Census, 

and POIs are from HERE Technologies. The regions for which these data are available are 

described in Table 1. 

Accessibility analysis was conducted using Sugar Access by Citilabs (since acquired by Bentley 

and rebranded as CUBE Access), which includes the most current data for each region as of the 

acquisition date (Table 1). Driving and transit accessibility are measured at the Census block 

group level and walking access is measured at the block level, then aggregated to block groups 

using the average value. Walking accessibility is defined in terms of the number and variety of 

POIs reachable by walking and reported as a score between 0 and 100. POIs are divided into nine 

categories—bank, education, entertainment, food and drink, grocery, health, public services, 

recreation, and shopping—and assigned different targets and weights defined by McCahill (55). 

Points are awarded based on the corresponding travel time decay function for home-based, non-

work walking trips, derived from the 2017 NHTS. For instance, the education category is 

assigned a target of two schools, totaling 11.1 out of 100 total points. If the nearest school is five 

minutes away based on pedestrian impedance, it receives a utility of 75 percent, derived from the 

decay function, and earns 4.2 out of 5.6 points. A second school 12 minutes away earns 50 

percent, or 2.8 points. The education category therefore earns seven points. This is repeated for 

each category. 
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Table 1. Summary of data in accessibility analysis 

Region Block groups Acquired 

Seattle, Washington 2,945 2021 (via WSDOT) 

Spokane, Washington 449 2021 (via WSDOT) 

Eau Claire and Lacrosse, Wisconsin 636 March 2019 

Boston region, Massachusetts 6,070 May 2018 

Hawaii (statewide) 855 September 2018 

Michiana region, Michigan 888 June 2018 

Hampton Roads, Virginia 1,208 April 2018 

Lynchburg, Virginia 233 April 2018 

Northern Virginia (NOVA) 3,288 April 2018 

Utah County, Utah 635 January 2018 

Sacramento, California 1,054 March 2016 

Dane County, Wisconsin 310 June 2015 

U.S. Environmental Protection Agency (EPA) 

The U.S. Environmental Protection Agency provides national accessibility metrics in its Smart 

Location Database, in addition to its National Walkability Index (60). These include similar 

metrics to those developed by SSTI but with the following key differences: 

1. Access to jobs by driving and by transit are measured using a hard 45-minute 

threshold, as opposed to a travel time decay function. 

2. The National Walkability Index is derived by combining measures of intersection 

density, proximity to transit stops, employment mix, and household mix. Index values 

range from 1 to 20, based on block group ranking. 

3. Travel times between block groups are estimated using the TravelTime API, as 

opposed to observed traffic speeds, transit routing information, and pedestrian 

impedances. 

The Smart Location Database contains many additional built environment characteristics such as 

population and employment density measures, land use diversity measures, road and intersection 

density measures, and measures of transit proximity and frequency. These data were updated 

during this study (in mid-2021) and therefore were not considered in the initial study design. 

They are used as proxy measures for SSTI’s optimized metrics, at the national scale. 

Metropolitan Area Planning Council (MAPC) 

The Metropolitan Area Planning Council (MAPC) produces the Massachusetts Vehicle Census, 

which includes annual mileage estimates from vehicles across the state based on data from 

vehicle registrations, inspection records, mileage ratings, and other sources (61). This study 

incorporates the most recent summary tables, provided at the Census block group level for the 

period 2009 to 2014. The average daily household VMT (“mipday_phh”) are estimated by 

multiplying the average daily mileage per vehicle by the estimated number of vehicles per 

household for each block group, based on the most recent data in fourth quarter of 2014. 
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National Household Travel Survey (NHTS) 

Estimates of household VMT from across the U.S. are derived from the National Household 

Travel Survey (NHTS). This study uses the best estimate of annual household VMT, as reported 

in the NHTS (62), in addition to household income, count of household vehicles, and count of 

household members. Restricted files were obtained from the Federal Highway Administration 

and Oak Ridge National Laboratory, which contained Census block group indicators for each 

household. This allowed us to attach accessibility metrics to each household. 

Local transit ridership data 

Local transit ridership data were acquired through outreach to six individual transit agencies. 

Each agency produced location-based boarding data—by station or by geographic coordinate—

for a typical weekday before the COVID-19 pandemic. After cleaning the raw data, boardings 

were allocated to surrounding Census block groups in proportion to their intersection with a ¼-

mile buffer around the boarding location. More details are provided in Part 3. 

American Community Survey (ACS) 

The American Community Survey (ACS) provides estimates of total population, total number of 

households, median income, and total vehicle count at the block group level. This study uses data 

from the 2019, five-year ACS, accessed via the National Historical Geographic Information 

System (63). 

Data summary 

The variables used in this study are described in Table 2. 
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Table 2. Variables and data sources 

Variable  Description  Source  

GEOID10  Block group ID    

Region  Region identifier  SSTI  

jbDr  Access to jobs by driving  SSTI  

jbTr  Access to jobs by transit  SSTI  

nwWk  Access to non-work POIs by walking  SSTI  

vmtMa  Average daily household VMT  MAPC  

trBoard Average weekday transit boardings (various agencies) 

pop  Population  ACS  

hh  Households  ACS  

hhSize  Average household size   ACS  

incMed  Median income  ACS  

hhVeh  Average vehicles per household  ACS  

wrkDrShr  Share of workers driving  ACS  

wrkTrShr  Share of workers using transit  ACS  

wrkWkBkShr  Share of workers walking or biking  ACS  

wrkOtShr  Share of workers using other mode  ACS  

wrkTtAv  Average travel time to work  ACS  

Cbsa  Metropolitan area ID  EPA 

CbsaName  Metropolitan area name  EPA 

CbsaPop  Metropolitan area population  EPA 

CbsaEmp  Metropolitan area employees  EPA 

D5ar  Jobs within 45 minutes by driving  EPA 

D5br  Jobs within 45 minutes by transit*  EPA 

nwi  National Walkability Index  EPA 

hhIncNhts  Income for NHTS household  NHTS  

hhVehNhts  Number of vehicles for NHTS household  NHTS  

hhSizeNhts  Number of people for NHTS household  NHTS  

hhVmtNhts  Annual VMT for NHTS household  NHTS  

* Missing values are assigned a value of zero. 
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Other available accessibility metrics 

Although they were not formally used in this study, our team also assessed accessibility 

metrics developed by the Accessibility Observatory (AO) at the University of Minnesota 

for the 50 largest metropolitan areas in the U.S. in 2018.1 These include access to jobs by 

driving and transit, reported for travel time thresholds between 5 and 60 minutes, at five-

minute intervals. Using these data, our research team estimated the number of jobs in each 

five-minute band and assigned each band a weight based on the same travel time decay 

function used in our optimized accessibility metrics (at the midpoint of the band). These 

Census block-level estimates were aggregated to block groups using average values. 

The figures below show how the two metrics compare for five regions with available data. 

While driving accessibility metrics are highly correlated, there is considerable variability 

in the transit accessibility metrics, especially in Seattle area, which is likely due to 

differences in transit route data and travel time estimates. 

  

1. Data from the Accessibility Observatory are available at https://access.umn.edu/data/ 
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Part 1. Average household VMT in greater Boston 

The first portion of this study relies on the most robust data available: SSTI’s optimized 

accessibility metrics and average household VMT for every Census block group in 

Massachusetts. As described earlier, this study is more interested in simple models to help 

understand the potential use of accessibility metrics in practical decision-making, as opposed to 

complex, predictive models. Therefore, this analysis focuses on three key accessibility 

measures—access to jobs by driving, access to jobs by transit, and access to non-work 

destinations by walking—along with several of the most influential household characteristics, 

according to literature: income, household size, and vehicle ownership.  

Methods: Part 1 

The methodology for model development consisted of sampling, exploratory data analysis, 

variable functional form evaluation, model coefficient estimation, model diagnostic, and 

validation.  

Training and holdout groups were sampled for model development and validation. Through 

random sampling, a third of the overall data was selected in the holdout group for assessment of 

the reliability of the model estimates. Exploratory data analysis consisted of evaluating training 

data predictor variables observed distributions and correlation factors of multiple combinations. 

The exploratory analysis provided information to identify potential predictors and functional 

forms (64).  

Model coefficients were estimated with non-linear least square approach. Linear regression fits 

straight lines whereas nonlinear regression generates curves as if values of the dependent 

variable were random. Sum of squares is a measure of the difference between the mean and each 

observation in the data. The objective is to make the sum of the squares as small as possible. 

Thus, the smaller the sum of squares the better the function fits the observed data. With nonlinear 

regression, several functional forms may be used for each predictor variable including 

trigonometric, logarithmic, and power functions. R statistical software was used to fit the models 

with specified functional forms. Initial values of model coefficients had to be provided for model 

convergence. Variables were introduced in the model incrementally, and functional forms and 

coefficients were monitored to identify changes due to variable interactions. Also, the order in 

which variables were introduced was considered, and the best combination and optimal 

functional for each variable was selected (65).  

Measures of goodness of fit included model coefficients’ t-tests and standard errors of residuals. 

In linear regression, R2 is commonly used to explain the degree of variance in the model since 

the total variance is equal to the explained variance plus error variance. The arrangement 

produces the R2, which is always between zero and one. However, in nonlinear regression, 

explained variance under linear assumptions do not apply because the explained variance and 

error variance do not add up to the total variance, and the R2 is not necessarily between zero and 

one. As a substitute, the standard error of the results is evaluated as a measure of goodness of fit 

for nonlinear regression—the smaller the standard error of residuals the better the model fit.  
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Model validation was conducted using the holdout data. The method used for validation was 

cross-validation which consists of evaluating the square univariate correlation between observed 

and predicted response values with training and holdout data—shrinkage of cross-validation. 

There are not strict rules of the magnitude of shrinkage, but absolute values smaller than 0.1 

indicate a reliable model (64). 

 
Figure 1. Average daily household VMT in Boston study area and training versus validation data 

 

Results: Part 1 

Prior to model development, we evaluated the individual relationships between household VMT 

and each dependent variable, several of which are depicted in Figure 3 through Figure 5. We also 

evaluated the functional form of each variable and the correlations among independent variables. 

We then developed numerous models using numerous combinations of Census data and 

accessibility metrics, until we arrived at several key models described below, for which the 

coefficients and their statistical significance, the residual standard errors (RSE), and the square 

univariate correlations (r2) for validation data are shown in Table 3.  
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Figure 2. Average daily household VMT versus vehicle ownership (training data) 

 
Figure 3. Average daily household VMT versus driving accessibility (training data) 
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Figure 4. Average daily household VMT versus transit accessibility (training data) 

 
Figure 5. Average daily household VMT versus walking accessibility (training data) 

Models were developed using just Census data, just accessibility metrics, and a combination of 

the two. As a result, we arrived at models that combine vehicle ownership data with each of the 

three optimized multimodal accessibility metrics. Model 1.1 incorporates just vehicles per 

household (omitting median income and household size), with a standard error of 11.5. Models 

1.2, 1.3, and 1.4 add walking accessibility, transit accessibility, and driving accessibility in 

succession, for a combined standard error of 7.96. Models 1.5, 1.6, and 1.7 include just 

accessibility metrics, for a combined standard error of 9.74. The formulation of each is as 

follows: 

 Model 1.1:  𝑉𝑚𝑡𝑀𝑎 = 𝛽0 × ℎℎ𝑉𝑒ℎ𝛽1 
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Model 1.2:  𝑉𝑚𝑡𝑀𝑎 = 𝛽0 × ℎℎ𝑉𝑒ℎ𝛽1 × 𝑒(𝛽2×
𝑛𝑤𝑊𝑘

100 )
 

Model 1.3:  𝑉𝑚𝑡𝑀𝑎 = 𝛽0 × ℎℎ𝑉𝑒ℎ𝛽1 × 𝑒(𝛽2×
𝑛𝑤𝑊𝑘

100 +𝛽3×
𝑗𝑏𝑇𝑟
1𝐸6 )

 

Model 1.4:  𝑉𝑚𝑡𝑀𝑎 = 𝛽0 × ℎℎ𝑉𝑒ℎ𝛽1 × 𝑒(𝛽2×
𝑛𝑤𝑊𝑘

100 +𝛽3×
𝑗𝑏𝑇𝑟
1𝐸6 +𝛽4×

𝑗𝑏𝐷𝑟
1𝐸6 )

 

Model 1.5:  𝑉𝑚𝑡𝑀𝑎 = 𝛽0 × 𝑒(𝛽1×
𝑛𝑤𝑊𝑘

100 )
 

Model 1.6:  𝑉𝑚𝑡𝑀𝑎 = 𝛽0 × 𝑒(𝛽1×
𝑛𝑤𝑊𝑘

100 +𝛽2×
𝑗𝑏𝑇𝑟
1𝐸6 )

 

Model 1.7:  𝑉𝑚𝑡𝑀𝑎 = 𝛽0 × 𝑒(𝛽1×
𝑛𝑤𝑊𝑘

100 +𝛽2×
𝑗𝑏𝑇𝑟
1𝐸6 +𝛽3×

𝑗𝑏𝐷𝑟
1𝐸6 )

 

The model results reveal several important trends (Table 3). In four models, vehicle ownership 

has a strong positive effect on VMT. While vehicle ownership alone explains a considerable 

amount of variation in VMT, the size of its effect drops considerably when accessibility metrics 

are added. In those cases, walking accessibility has the strongest negative effect on VMT, 

followed by transit accessibility (negative), and driving accessibility (positive). Those trends 

hold true even when vehicle ownership is not included.  

 
Table 3. Model summaries: average daily VMT in Massachusetts 

Coeff. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 

ß0 26.93* 50.57* 49.97* 48.47* 82.62* 81.52* 74.31* 

ß1
 (hhVeh) 1.21* 0.62* 0.62* 0.60* — — — 

ß2 (nwWk) — -0.83* -0.60* -0.61* -1.29* -1.04* -1.04* 

ß3 (jbTr) — — -0.32* -0.44* — -0.33* -0.57* 

ß4 (jbDr) — — — 0.15* — — 0.30* 

RSE 11.54 8.38 8.02 7.96 10.27 9.95 9.74 

r2
validation 0.953 0.974 0.976 0.977 0.961 0.962 0.965 

Significance codes: *0.001 

This study points toward two of the models above for practical applications of accessibility 

analysis. Model 1.4 is useful for estimating VMT using accessibility metrics in combination with 

vehicle ownership data. In practical terms, increasing vehicle ownership or driving accessibility 

tends to increase VMT, while increasing transit or walking accessibility tends to lower VMT. 

The model has potential uses in estimating the effects of road, transit, or walking investments, 

land use changes, and parking policy or other factors affecting vehicle ownership. Model 1.7 is 

useful when no information about parking or vehicle ownership is available. 
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Our validation using a subset of the data confirms that the resulting models are reliable and 

useful for predicting household VMT throughout the Boston region. Quite notably, the square 

univariate correlations for the model and calibration datasets are very similar for each of the 

models, indicating that the models are robust and capture the variability in the data appropriately. 

The relationship of predicted and observed values using Model 1.4 and Model 1.7 with 

validation data are shown in Figure 6 and Figure 7, respectively. 

 

 
Figure 6. Observed versus predicted values based on Model 1.4: accessibility and vehicle ownership (validation data) 

 
Figure 7. Observed versus predicted values based on Model 1.7: accessibility only (validation data) 
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Conclusions: Part 1 

The results above offer important proof-of-concept for applying accessibility metrics in 

estimating household VMT and predicting the impacts of transportation and land use changes on 

VMT. Most notably, the models capture the positive effect of driving accessibility on VMT, 

compared to transit and walking accessibility, as opposed to the negative effect that can be 

observed when looking at driving accessibility alone (as in Figure 3). This points to the fact that 

driving accessibility is often highest in central locations where transit and walking accessibility 

are also high, and therefore less driving occurs. The results also point to useful non-linear model 

formulations for estimating household VMT, particularly when robust, aggregate VMT data are 

available, as in Massachusetts. The following sections of this report explore possible applications 

outside of Boston, including one application with sparser, more granular VMT data from 

throughout the U.S. and with aggregate transit ridership data for a handful of regions. 
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Part 2. Individual household VMT across the U.S. 

This portion of the study aims to extend the concepts tested in Boston (Part 1) to a broader, 

national scope. The research approach evolved during this study due to: 1) limitations of the 

National Household Travel Survey (NHTS), from which estimates of household VMT are 

derived, and 2) the release of updated accessibility data from the U.S. EPA in mid-2021. The 

findings are currently inconclusive but point toward important future work. 

Methods: Part 2 

The original geographic scope of this study included the regions described in Table 1, using 

SSTI’s optimized accessibility metrics and household-level VMT estimates from the NHTS. 

However, sampling limitations in the NHTS make it inadvisable to analyze just those subregions. 

Fortunately, the U.S. EPA’s Smart Location Database was updated during this study to include 

three comparable accessibility measures: access to jobs within 45 minutes by driving (jbDr45), 

access to jobs within 45 minutes by transit (jbTr45), and a National Walkability Index (nwi).  

A comparison of these metrics to SSTI’s optimized accessibility metrics shows some correlation, 

but also important deviations (Figure 8 through Figure 10). For instance, SSTI’s optimized 

access to jobs by driving tends to produce numbers that are around four times larger in many 

locations (Figure 8). These differences are likely due to differences in the underlying data (e.g., 

assumed travel speeds) and the fact that SSTI’s metric includes jobs outside of the 45-minute 

threshold, weighted based on travel time. 

 
Figure 8. SSTI’s optimized metrics versus U.S. EPA’s metrics, for driving accessibility 

The relationships between transit and walking accessibility metrics are similar, but there are 

areas where the EPA’s metrics are considerably higher than SSTI’s (Figure 9 and Figure 10). In 

the case of transit, these differences are likely due to differences in how travel times are 

estimated—i.e., using transit route information versus observed interzonal travel times. More 
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variation is expected among the walking accessibility metrics, as shown, because EPA’s metric 

does not incorporate POI data. 

 
Figure 9. SSTI’s optimized metrics versus U.S. EPA’s metrics, for transit accessibility 

 
Figure 10. SSTI’s optimized metrics versus U.S. EPA’s metrics, for walking accessibility 

Despite these differences, accessibility metrics from either source bear similar relationships to 

household VMT (Figure 11 through Figure 13). In this case, household VMT is transformed by 

taking the cube root to adjust for positive skewness. 
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Figure 11. Annual household VMT versus driving accessibility (n = 8,066) 

 
Figure 12. Annual household VMT versus transit accessibility (n = 8,066) 

 
Figure 13. Annual household VMT versus walking accessibility (n = 8,066) 

 

Results: Part 2 

Based on the assessment above, national models of household VMT were evaluated using 

accessibility metrics from the EPA. As above, the cube root of household VMT is used to correct 
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for positive skewness and to improve model performance. Unlike in Part 1, which incorporated 

non-linear modeling techniques, simple linear regression models were applied here. As the 

modeling results show, there are similar relationships between accessibility metrics and VMT, 

but the high level of variability in household VMT makes more granular modeling implausible.  

 
Figure 14. Annual household VMT versus number of vehicles (n = 123,447) 

 
Figure 15. Annual household VMT versus driving accessibility (n = 123,447) 
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Figure 16. Annual household VMT versus transit accessibility (n = 123,447) 

 
Figure 17. Annual household VMT versus walking accessibility (n = 123,447) 

 

As shown in Table 4, the modeling results show similar trends to those observed in Part 1, but 

the amount of variation explained by the model is much lower (R2 ≈ 0.3) and vehicle ownership 

is the predominant factor explaining VMT in each of our models. As in Part 1, vehicle ownership 

has a strong positive correlation with VMT, walking and transit accessibility have negative 

correlations with VMT and improve the model slightly, and driving accessibility has a small 

positive correlation with VMT. 
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Table 4. Model summaries: average household VMT, nationally 

Coeff. 3.1 3.2 3.3 3.4 

Intercept 17.94* 18.85* 18.81* 18.84* 

hhVehNhts 3.78* 3.72* 3.72* 3.72* 

nwi — -0.088* -.0813* -0.106* 

D5br — — -5.18E-7* -1.34E-6* 

D5ar — — — 2.83E-6* 

R2 0.316 0.318 0.318 0.319 

Significance codes: *0.001 

Conclusions: Part 2 

As compared to the proof-of-concept analysis in Part 1, the national models shown here are not 

as conclusive, but they do offer compelling evidence that the robust model results in 

Massachusetts may be transferable to other parts of the U.S. Even with a simpler linear model 

formulation, vehicle ownership and multimodal accessibility metrics help explain VMT with the 

expected sign and relative magnitude. 

In addition, the results of this analysis suggest that simpler cumulative accessibility metrics (i.e., 

the number of destinations within a predefined travel threshold) may be equally useful in 

predicting travel outcomes as gravity-based metrics, despite some literature suggesting the 

contrary (50).  
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Part 3. Transit ridership in selected regions 

This portion of the study explores the relationship between transit ridership and multimodal 

accessibility metrics, like the VMT analysis in Part 1, but for a larger number of regions. Unlike 

Part 2, this analysis retains the use of optimized accessibility metrics developed by SSTI. 

Methods: Part 3 

For this study, our research team acquired transit boarding data by soliciting six transit agencies 

in selected regions. Data for bus, heavy rail (subway), and commuter rail ridership were 

provided. The timeframe of data we requested from all agencies followed the same language: the 

best location-based boarding data available that represents a typical pre-pandemic weekday, that 

was free of any major holidays, transit detours, or events that could impact transit ridership (e.g., 

college move-in days or winter holiday seasons). The resulting data are summarized in Table 5.  

Boarding data were provided by transit stop or approximate boarding location, then aggregated 

to nearby Census block groups in GIS using methods like those described by Bree et al. (66). 

The total ridership at each location was distributed to nearby Census block groups first by 

creating a ¼-mile buffer around each boarding point, and then by allocating trips in proportion to 

the intersecting areas occupied by each block group. 

 
Table 5. Summary of transit ridership data 

Location Agency Service type Period 

Boston, MA Massachusetts Bay 

Transportation 

Authority (MBTA) 

Bus Fall 2019 

Subway Spring 2018 

Commuter rail Fall 2019 

Utah County, UT Utah Transit 

Authority (UTA) 

Bus  April & August 2019   

Rail  April & October 2019   

Spokane, WA Spokane Transit 

Authority 

Bus  2019 

Madison, WI Madison Metro Bus  March 3-16, 2019 

(Tuesday to Thursday) 

Honolulu, HI TheBus Bus  Spring & Fall 2019 

(excluding holidays)   

Seattle, WA King County Metro Bus   Spring & Fall 2019   

 

These data were then combined with SSTI’s multimodal accessibility data and demographic 

information (median income, average household size, and number of vehicles per household) 

from the ACS for each block group. Models were developed to estimate the total number of 

transit boardings associated with each block group. We evaluated a single model for all six 

regions and models that account for regional effects using indicator variables.  
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Results: Part 3 

Initial data exploration suggests transit boarding data should be transformed by taking its natural 

logarithm, to account for positive skewness and to improve model performance. As in Part 2, 

simple linear regression models were applied.  

Each factor has a similar but opposite relationship to transit ridership, compared to the VMT 

models in Part 1 and Part 2. As in other parts of this study, vehicle ownership is determined to be 

the most important household-level indicator. Vehicle ownership is negatively correlated with 

transit use (Figure 18), and accessibility metrics are positively correlated (Figure 19 through 

Figure 21). Those relationships are not as strong as in Part 1 (average household VMT in 

Boston) but they are stronger than in Part 2 (household VMT across the U.S.). Due to the 

complex relationship between driving and transit accessibility, we also tested a combined metric: 

the ratio of jobs accessible by transit to jobs accessible by driving (jbTrDr). This metric also has 

a notable positive relationship to transit ridership and proved useful in developing a simpler 

model, as described below. 

 
Figure 18. Transit ridership versus number of vehicles per household (n =3,858) 
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Figure 19. Transit ridership versus driving accessibility (n =3,858) 

 
Figure 20. Transit ridership versus transit accessibility (n =3,858) 
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Figure 21. Transit ridership versus walking accessibility (n =3,858) 

 
Figure 22. Transit ridership versus transit to driving accessibility ratio (n =3,858) 

 

As shown in Table 6, the modeling results show some resemblance to those in Parts 1 and 2 of 

this study. For instance, vehicle ownership is a key factor and multimodal accessibility metrics 

considerably improve model performance. In this case, however, the relationships among 

accessibility metrics appear more complex. Walking accessibility appears to be considerably less 

influential in these models and the signs of each accessibility term are more ambiguous. In 

addition, Model 3.5 suggests that including regional indicators helps improve model 

performance considerably. In this case, transit ridership Honolulu is much higher than the model 

would otherwise suggest and ridership in Boston is much lower. 
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To account for inconsistencies among the three accessibility metrics (due largely to collinearity), 

we tested a combined metric (jbTrDr), as described above. This metric proved useful for 

simplifying the model in several ways: 

1. A model with the combined metric (Model 3.5) performs just as well as a model with 

transit and driving accessibility as separate factors (Model 3.4). 

2. In a model with the combined metric, several regional indicators are no longer necessary. 

Indicators for Boston, Seattle, and Spokane are significant, with Honolulu, Madison, and 

Utah as the reference case (Model 3.6 and 3.7). 

3. Walking accessibility remains insignificant (Model 3.6 and 3.7). 

The final model (Model 3.7) includes only vehicle ownership (negative), the ratio of transit to 

driving accessibility (positive), and indicators for three regions. The amount of variation in block 

group-level transit boardings explained by this model is slightly better than our national VMT 

models in Part 2, but still not as good as our Massachusetts-specific VMT model in Part 1. 

 
Table 6. Model summaries: average weekday transit boardings, selected regions 

Coeff. 3.1 3.2 3.3 3.4 3.5 3.6 3.7 

Intercept 7.15* 7.42* 7.19* 5.89* 5.03* 3.71* 3.70* 

hhVeh -1.98* -2.05* -1.94* -1.80* -1.40* -1.55* -1.55* 

nwWk — -3.19E-4~ -5.85E-3* 3.69E-3~ -1.63E-4 7.57E-4 — 

jbTr — — 5.43E-7* -1.31E-6* 3.62E-6* — — 

jbDr — — — 2.02E-6* 8.59E-7* — — 

Boston — — — — -1.86* -0.84* -0.78* 

Honolulu — — — — 1.55* -0.069 (ref.) 

Madison — — — — 0.76* -0.14 (ref.) 

Seattle — — — — 0.79* 2.71* 2.75* 

Spokane — — — — 0.53* 1.22* 1.28* 

Utah — — — — (ref.) (ref.) (ref.) 

jbTrDr — — — — — 4.31* 4.31* 

R2 0.211 0.212 0.214 0.244 0.341 0.341 0.341 

Significance codes: *0.001 ~0.05 

 

Conclusions: Part 3 

As in Part 2, the transit ridership models tested here do not provide a highly reliable approach to 

estimating transit ridership, but they offer compelling evidence for the use of such models and 

point to important considerations in calibrating those models. Like VMT models, vehicle 

ownership appears to be a critical factor. Unlike VMT models, however, access to non-work 

destinations by walking in each Census block group does not appear to be an important indicator 

of transit boardings in that block group. Instead, the relative access to jobs by transit compared to 

access by driving appears to be the key accessibility indicator of interest. There are also 

important regional considerations beyond the scope of this study, which may be accounted for by 

including additional factors or by calibrating models specifically for each region.   



 

 

 

 

 

  

31 

Discussion 

Key findings and policy implications 

This research promises to advance the practice of estimating VMT and other travel-related 

outcomes using multimodal accessibility metrics—an application of particular interest to 

transportation agencies and planning organizations that are already interested in accessibility 

analysis. While not reported here, the elasticities of VMT with respect to accessibility metrics are 

potentially higher than those reported in past studies (22, 23), which means that these metrics 

could replace simpler built environment characteristics like density and land use diversity, as 

some have suggested (67). Past studies often consider accessibility in broad terms, like distance 

from the downtown or from the nearest transit stop. The metrics used in this study—access to 

destinations by different modes—are more promising from a modeling perspective and have 

more real-world implications for those in charge of transportation system design and land use 

regulations. Key findings from this study and practical policy implications are described below.  

1. Vehicle ownership remains a key factor influencing travel behavior. This is useful from a 

modeling perspective but has mixed implications for decision-making. Vehicle ownership can be 

influenced by a range of factors including household income and transportation options—i.e., 

multimodal accessibility. In many ways, this makes it a useful proxy for those with limited data, 

but also less instructional for decision-makers who have limited direct influence on vehicle 

ownership. Nonetheless, vehicle ownership is still important to consider in combination with 

accessibility metrics, which could therefore influence land use and transportation decisions more 

directly. For instance, this work suggests that transit and walking improvements may be less 

effective in areas characterized by high vehicle ownership and, conversely, efforts to manage 

vehicle ownership—such as parking regulations and TDM policies—could have a significant 

effect on VMT. This view is supported by a considerable body of research suggesting the price 

and availability of parking is a key determinant of travel behavior (68). 

2. Multimodal accessibility metrics can be used to predict average household VMT with a 

high level of reliability. This finding is confirmed by our robust models in the greater Boston 

area, which rely on a comprehensive VMT database and optimized accessibility metrics. Our 

most promising models rely only on accessibility metrics and vehicle ownership data, indicating 

that decision-makers can tie travel outcomes directly to those factors for which they have more 

direct control and omit external factors like income that, while important to consider, also have 

great potential to shift over time. In other words, this research suggests that policymakers can 

anticipate how built environment changes will likely influence travel behavior, independent of 

who lives in those places. 

These models are not as useful for predicting individual household VMT at a national scale, 

according to the limited available data, but the same patterns seem to hold. This indicates that 

our model developed for the Boston area may be transferable, but more validation is needed. A 

lack of reliable household VMT data is one key obstacle to more widespread validation and 

adoption of the models. 
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3. Multimodal accessibility metrics are also useful for predicting transit ridership. As in 

models for predicting VMT, vehicle ownership remains a key factor in predicting transit 

ridership, with accessibility metrics improving model performance considerably. As with our 

national VMT model, a simple linear transit ridership model only explains about 30 percent of 

variation in transit ridership at the Census block-group level.  

4. There is complicated interplay among accessibility by different modes that should be 

accounted for in models of travel behavior. Considered individually, driving, transit, and 

walking accessibility all appear to have a negative relationship to VMT and a positive 

relationship to transit ridership. Taken in combination, however, driving accessibility appears to 

have a small or positive effect on VMT, while transit and walking accessibility have increasingly 

negative effects. The effects of accessibility on transit ridership may be even more complex, but 

these complexities can be simplified by considering the ratio of transit to driving accessibility 

instead of each metric individually; walking accessibility does not appear to have a significant 

effect. The relative transit accessibility metric also seems to yield more consistent results across 

multiple regions.  

One important implication of these findings is that driving accessibility should not be taken on 

its own as an indicator of travel behavior, despite its strong association with travel behavior. The 

highest driving accessibility is typically observed in areas where transit and walking accessibility 

are also highest—a function of proximity to jobs. Improving access to jobs by driving, however, 

such as through new highway investments or capacity improvements, will likely cause driving to 

increase (12, 69, 70). 

Limitations and future work 

Like many past studies, this research does not control for residential self-selection and, therefore, 

our models do not imply direct causation. For instance, while observed VMT is considerably 

lower in places with high walking accessibility, we cannot infer that improving walking 

accessibility will lower VMT among existing households. One reason is that people living in 

walkable neighborhoods tend to be predisposed to driving less (70). Nonetheless, controlling for 

self-selection tends to result in significant effects and higher elasticities (23, 70).  

Similarly, this study is based on cross-sectional snapshots of accessibility and travel behavior at 

a single point in time. It cannot be concluded, therefore, that incremental changes in accessibility 

would necessarily translate directly into changes in travel behavior. Temporal studies that 

measure changes in accessibility and travel behavior over time may be needed to validate 

assumptions about the impacts of transportation investments on travel outcomes. In the 

meantime, however, it is reasonably safe to assume, given our current understanding of how the 

built environment influences travel behavior, that cumulative changes in accessibility over time 

are likely to result in travel outcomes like those characterized by our models, all else being equal. 

In simpler terms, increasing accessibility by non-auto modes, relative to driving, is likely to 

lower VMT and increase the use of non-auto modes. This study provides some justification for 

leveraging accessibility metrics to gauge those potential impacts. 

This study does not include accessibility metrics for bicycles or other emerging forms of 

mobility. This is due partly to unique challenges in characterizing bicycle accessibility. As with 
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walking accessibility, there is a need for commonly accepted standards of bicycle infrastructure 

quality, such as level of traffic stress (71), along with methods for applying those standards in 

accessibility analysis. Our research team has experimented with different methods for applying 

level of traffic stress as network impedances or travel time penalties (as with our walking 

accessibility metrics), but there is no widely accepted approach. Moreover, any such approach 

requires rich, reliable data describing road characteristics and bicycle infrastructure quality for 

every link in the transportation network. OpenStreetMap provides high quality, crowdsourced 

data in some locations, but more robust data are needed. Incorporating accessibility metrics for 

additional modes could help improve model outcomes, but also has the potential to introduce 

more complex interactions among those variables. 

Given the promising results in this study, researchers should continue to explore opportunities 

for improved modeling techniques and for leveraging more robust data sources (including local 

data, such as those in Massachusetts) to further calibrate and validate models linking 

accessibility metrics to travel outcomes. This should also involve use cases, whereby specific 

projects or built environment changes are evaluated using accessibility metrics and real-world 

outcomes are compared to model outputs. 
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Conclusions  

This study, divided in three parts, presents important findings indicating that accessibility 

metrics, which describe access to destinations by various modes, can be useful in predicting 

travel outcomes like VMT and transit ridership. 

Part 1, which leverages a unique dataset in Massachusetts, offers important proof-of-concept for 

applying accessibility metrics in estimating household VMT and predicting the impacts of 

transportation and land use changes on VMT. Models were developed by dividing Census block 

groups into training and validation datasets. The models explain more than 90 percent of the 

variation in average household VMT using just multimodal accessibility measures and 

information about average vehicle ownership. An important aspect of these models is that they 

show driving accessibility has a positive association with VMT, while transit and walking 

accessibility have negative associations. 

Part 2 examines national models relating accessibility metrics to annual household VMT, based 

on observations in the National Household Travel Survey (NHTS). These models are not as 

conclusive as those in Part 1, but they do offer compelling evidence that the robust model results 

in Massachusetts may be transferable to other parts of the U.S. Even with a simpler linear model 

formulation, vehicle ownership and multimodal accessibility metrics help explain VMT with the 

expected sign and relative magnitude. This analysis also suggests that different forms of 

accessibility metrics, including simpler cumulative opportunity measures, can be applied. 

Part 3 presents models of transit ridership in six regions across the U.S. The results, again, are 

not as conclusive as those in Part 1, but they offer compelling evidence for the use of such 

models and point to important considerations in calibrating them. Like VMT models, vehicle 

ownership appears to be a critical factor. Unlike VMT models, however, access to non-work 

destinations by walking does not appear to be an important indicator of nearby transit boardings. 

Instead, the relative access to jobs by transit compared to access by driving appears to be the key 

accessibility indicator of interest. 
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